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Note on the time-dependent deformation of 
a viscous drop which is almost spherical 
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The theory of the shear-induced small deformation of viscous drops a t  zero Reynolds 
number is reviewed. The general result for arbitrary shear and surface tension is 
presented, and the asymptotic forms for weak flow and for high internal viscosity are 
derived from it. I n  the latter case, numerical solutions are compared with the experi- 
ments of Torza, Cox & Mason (1972). 

1. Introduction 
A number of papers, starting with the pioneering work of Taylor (1 934) have dealt 

with the theory of deformation of viscous drops. Many of these (Taylor 1934; Cox 
1969; Frankel & Acrivos 1970; Barthbs-Biesel & Acrivos 1973a, b )  have concerned 
deviations from sphericity which are small. There are, however, discrepancies between 
the various papers, and in consequence some confusion has arisen as to which of the 
proposed equations is appropriate to  describe experimental results - such as those 
obtained by Hakimi & Schowalter (1980). The purpose of this note, then, is to unify the 
theoretical results, and to  make clear the conditions under which each applies, to- 
gether with its order of accuracy. 

I n  conformity with the notation of Hakimi & Schowalter (1980) we consider an in- 
compressible drop of viscosity p* and volume tnb3 immersed in an unbounded fluid of 
viscosity p,,. The suspending fluid is sheared a t  a rate G( E +8) with E and 8 the 
symmetric and antisymmetric parts of the velocity gradient, and the consequent drop 
deformation is inhibited by the interfacial surface tension cr. We suppose, as in the 
papers quoted above, that the deviation from sphericity is small. 

The feature which all the analyses have in common and attempt to exploit is that for 
a nearly spherical drop the flow field may be determined by a perturbation expansion 
and, due to the quasi-stationarity implied by the Stokes equations, is determined by 
the instantaneous shape. Since in general the deformation becomes not small even- 
tually, the perturbation scheme by which the velocity field is generated cannot be 
justified for all times. The time for which the analysis does remain valid varies accord- 
ing to the physics in each case as we show below. 

I n  a time-dependent problem, then, we may legitimately postulate a near-sphere 
initial condition for the drop shape, and the natural questions to be asked are, first, 
which terms are important in the shape evolution equation; and, secondly, for how 
long the assumption of near-sphericity remains valid. 

Given some shape S for the drop whose deviation from sphericity is measured by the 
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small parameter e, we suppose that the solution u(x) of the Stokes equations for the 
fluid velocity everywhere is known. By linearity, this consists of the sum of two terms, 
one linear in the forcing G by the external flow, and the second proportional to the 
surface tension (T of the drop. The latter vanishes with e, and so we may write 

€(T 
u = bGu1 +-uU,, 

PO 

with each ui = uI(x, p*/po, e,  S) and u, depending also on the tensorial nature of the 
applied linear flow. Now non-dimensionalizing time with respect to  the shear rate G-l, 
we have for the normal velocity at the drop surface 

u.  n = uln + keuZn, (1) 

where, as in Hakimi & Schowalter (1980), we write k = u/bGp0 and A = p*/,uo. It is, of 
course, only the normal velocity that is responsible for the time-dependent drop defor- 
mation. We see a t  once from (1) that, if u l n / k  is not O(e)  or smaller, then the deformation 
will not remain small after a time of order unity (or of order A for large A ) ,  and 
hence the solution will break down. We consider below the special cases in which u l n / k  
is small, but consider the general case first. 

I n  principle, this approach demands that we consider a surface of arbitrary shape 
(provided its deviation from sphericity is small) and consider the excitation and relaxa- 
tion of all possible modes of distortion. This has been done by Cox (1969) but only for 
A = co. The results are rather complicated. I n  addition, we see that, if the deviation 
from sphericity is measured by spherical harmonics of all orders, then since the flow 
itself is second harmonic in type, a t  leading order in e the rate of change of the nth 
harmonic is, a t  worst, forced only by harmonics of orders n, n + 2. I n  consequence if the 
initial condition for the shape is spherical or specified by a second harmonic (and these 
are the common cases of interest) then a t  leading order in e the subsequent deformation 
may be described by a second harmonic, although higher accuracy in E requires 
correspondingly higher harmonics. 

We consider then the instantaneous surface 

7 = b ( l + ~ f )  with f = flF:VV(l/r)+~[(-6/5)F:F+lbHiVVVV(l/r)] (2) 

in which F and H are completely symmetric and traceless tensors of the second and 
fourth ranks, respectively, and for which the normal surface velocities uln, uZn have 
been determined by BarthBs-Biesel & Acrivos ( 1 9 7 3 ~ ) .  As noted above, we may expect 
that  the flow, although it will not preserve the shape defined by (2) as the deformation 
proceeds, will generate higher harmonics in f only at higher orders in e. We therefore 
have, slightly modifying BarthBs-Biesel & Acrivos’ analysis, that  

9 F  
9 t  

E -  = a, E + e{kal F + Sd(E . F)} + e2{ka3 Sd(F2) + a4 EF: F 

+a, FE: F + ~ , s ~ ( E .  FZ) + a , ~ :  E}+ 0(€3,ke3), (3) 
9H 

c z  = blfJdE,(EF)+e{bokH +bzkSd4(FF)+b3Xd4(E.H)+b4Sd4(E. FF)}+O(eZ, k G ) ,  
(4) 

in which 91% is a Jaumann derivative rotating with the vorticity Q, and the ‘sym- 
metric deviator’ operators Sd ,Sd4 are defined by BarthAs-Biesel & Acrivos ( 1 9 7 3 ~ ) .  
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They also give ai (i = 0,  8); bi ( i  = 0,2) explicitly as (rational) functions of A. I n  particu- 
lar, a, = 5 / ( 2 A  + 3).  The coefficients b,, b,are similarly functions of h but are not known. 
We expect that, for all values of A ,  ai, bi (and corresponding coefficients for higher-order 
terms) will be no larger than O( 1)  but the limit A -+ co is of particular concern. We shall 
see below that the boundedness requirement i s  met in the high h limit, and, on the 
assumption that the velocities vary continuously with A ,  it follows that the coefficients 
are bounded for all values of A. The equations above differ from those of Barthks-Biesel 
& Acrivos in two respects. First, we have made no assumption about the magnitude of 
k (whereas they take k = e-1). Secondly, certain higher-order terms (e.g. e3u, kF: F F )  
are here neglected (as they may be to the order of accuracy presented). 

We see from (3)  that  F becomes > O( 1 )  after a time O ( E )  unless either k or A is large. 
Hence in general the equations above accurately describe the time evolution (say from 
sphericity eF = e2H = 0) only for small times, and no equilibrium is possible within the 
range of validity of the analysis. I n  addition, while the analysis remains valid it may 
be seen that, for O(e)  accuracy in the shape, the O(e2)  terms in (3) can be neglected, and 
(4) ignored completely. Similarly at  O(e2) (3) and (4) suffice: the sixth harmonic terms 
can be neglected and so the initial shape postulated in ( 2 )  is preserved with F and H 
regarded as functions of time, and errors in r of O(e3).  

We now turn to the special cases in which an equilibrium does exist within the range 
of validity of the analysis. 

2. Weak flow: k B 1 with A = o(k)  
Since in principle k, E are independent parameters for the system (3)) (4) may be 

simplified for the effect of k $ 1 without reference to E .  On the other hand if the weak 
flow is assumed to be responsible for the small deviation from sphericity then we may 
put k = e-l. This is the case we consider. Thus (3),  (4) become 

B F  €3 = a0E+a,  F+e[a2Sd(E. F)+u,Xd(F2)]+O(e2), 

GH 
9 t  

E -  = bl Sd,( E F )  + boH + b, Sd4( F F )  + O(6).  

( 5 )  

These are the equations of the ‘ O ( E )  theory’ of Barthhs-Biesel & Acrivos ( 1 9 7 3 ~ )  
except that  the time derivative on the left-hand side of (6) is replaced by a/at,  as it may 
be to this level of approximation. They, in fact, give some of the higher-order terms 
but not to  any consistently higher order. The O( 1) theory of Taylor (1934) corresponds 
simply to  

(7) 
aF 
at 

e- = a,E+a1 F+O(E).  

Only in this case i t  is permissible to replace the Jaumann derivative by an Eulerian 
time derivative. The numerical computations of Hakimi & Schowalter (1980) suggest’, 
however, that  this is a poor approximation for small but finite e and for that  reason we 
have retained also B/Gt in (6). We note in passing that the appearance of e a/a t  in (7) 
shows that for weak flows the appropriate time scale is the surface-tension time 
c/p0 b( 1 + A )  rather than the shear time G-l. 
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3. High viscosity drops: h 9 1 with k = o(h) 

It is in this case that the greatest confusion has arisen. As before, e and l / h  may be 
assumed independent, but the case of interest is where an O( l / h )  distortion has been 
produced by the flow. We therefore put h = 6-l and simplify (3), (4). Now as shown by 
BarthGs-Biesel & Acrivos (1973a), as h+m, ai = O ( l / h )  for i = 0,1,2,3,8,  but re- 
mains O ( 1 )  for i = 4,5,7. Thus some terms ' jump order' in (3) and give 

_ -  - gE +c{ -$$lcF +='+Sd(E. F) -gE - 3EF: F+  18Sd(E. F2) - 6FE: F}+ O(e2, kc'), 

- = _- :4 Xd,(EF)+bjSd,(E.H)+biSd,(E. FF)+O(e,ke), 

9 F  
9 t  

(8) 

(9) 
9H 
9 t  

where bi, = lim b3, ,. The O( 1) version of these equations is simply 
'4-m 

_ -  - gE. 9 F  
9 t  

An improved form of (8), (9) may be obtained by rederiving (3), (4) from first prin- 
ciples in the limit h+m. This provides an independent check of (8), explains the 
jumping of orders in l / h ,  and ensures that the a,(h) do not exceed O(1) as h+m. 

The crucial idea is that  a t  leading order in l / h  the drop is a rigid body, which can 
rotate, but not deform. Only a t  the next order does the unbalanced external tangential 
stress on the surface drive a deformation. I n  consequence, whatever the instantaneous 
shape, the flows inside (u*) and outside (u) the drop are given by: 

Ut : 
Solid body rotation of +- Flow due to  surface tension 
rigid body due to  G a t  co. (:flow due to  stress generated 

by uo 

U, : 
u = ( Flow 

At each stage, 

outside rigid body generated by matching 
with G a t  00. with: 

the internal velocity fields may be computed to within a rigid body 
motion from the known surface stresses generated a t  lower order (at the first stage 
these are zero). This then enables the outer flow, u, to be calculated a t  the same order, 
to within that generated by the unknown rigid body motion. This motion is finally 
determined by the requirement that the drop exert no net force or couple on the outer 
fluid (the dotted arrows above). 

For the surface given by (2) then, uz is the rotation of a rigid, couple-free near-sphere 
in a straining motion G( E +a). As noted by Rallison (1 978, 9 7)  this angular velocity 

Hence denoting the modified Jaumann derivative with 8 replaced by 8* as 9 * / 9 t ,  we 
have formally that 

9 * S / 9 t  = ( l / h )  (stretching terms: ul, u,*) + O( l / hB ,  k / A 2 ) ,  

G!2* is given by !2* = 8 - 3 ~ (  F . E - E . F) + O ( G ) .  
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and so with e = h-l the O(e) terms in (3), (4) give the stretching terms to sufficient 
accuracy, and thus 

g * F / g t  = 8 E  + h[ 1 -$kF +1+Sd( E . F) - 

9 * H / 9 t  = &,Sd,(EF)+O(l/A, k / h ) ,  (9)‘ 

and these can be shown to be equivalent to (8), (9) with 6; = bi = 0.  The terms which 
‘jump order ’, then, are precisely those corresponding to a pure rotation of the near- 
sphere without deformation. By an extension of the same argument, we can see that 
those ai’s corresponding to surface deformation are no larger than O(l/h), and that 
those corresponding to rotation are O( 1) as A + 00. 

I n  all previous analyses of this problem, i t  seems that only (8) has been written 
down, although (9) is required a t  the same order of accuracy for the shape. The 0(1) 
equation (10) has been given correctly by several authors (Taylor 1934; Cox 1969). Its 
solutions are of two types: if the vorticity is smaller than O(A-l), then the drop deforms 
monotonically and the deformation becomes large after a finite time (of order A ) ;  if the 
vorticity is not small, then (10) gives a regular oscillation of shape with no tendency 
toward equilibrium even for t+co (surface tension does not appear at this order, so 
the absence of a trend toward equilibrium is not unreasonable in view of the reversi- 
bility of Stokes flow). Thus in order to predict such an equilibrium the next terms are 
required. Of the terms which appear a t  the next order, Taylor (1934) and Cox (1  969) 
gave the first in braces in (8); Frankel & Acrivos (1970) the first two; BarthBs-Biesel & 
Acrivos (19736) gave all, but with a typographical error [their 8, should be 

i; - qh-1- 3h-14,  A,, 

following their equation (IS)]. 
Cox (1969) demonstrated, using his truncated form of (8), that the shape approached 

equilibrium a t  large timesvia a spiral. The corrected version shows the same qualitative 
behaviour as seen in figure 1, where the theoretical results here are compared with the 
experiments of Torza, Cox & Mason (1972). The flow considered is a simple shear with 
(E +S2)12 = 1, and other components zero. A scalar measure of the distortion is given 
by D(t)  = (I - b)/(E + b ) ,  where 1, b are the major and minor axes of the 1,2 cross-section; 
and its orientation is given by a(t), the angle between the major axis and the 2-direc- 
tion. The agreement is reasonable, with the magnitude of the distortion (z 0.1) 
underestimated by 10% and the frequency of oscillation by 5%. A higher-order 
theory seems to  be necessary to resolve these discrepancies. 

I n  the case where surface tension is absent altogether (k = 0) no equilibrium exists 
and the solution still shows a periodic cycle. Figure 2 shows a polar plot of D against 
a for a single oscillation, which then repeats indefinitely. The experimental result for 
the distortion is seen to be almost twice as large as that given by (S), though the 
period is accurate to within 10 yo. The principal reason for the discrepancy here is pro- 
bably the largeness of the (transient) distortion ( %  0.2) and so the O ( e )  theory is 
inadequate. 
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FIGURE 1. The quantities a(t), D(t) for A = 25, k = 0.66. -, O(E)  theory (S), (9); ---, 
experiments of Torza et al. (1972). 

4. High viscosity with comparably weak flow: k, h 9 1 

We consider finally the case when k and h are comparably large. Thus k = /kl, 
h = e-l with /3 = O( 1). The O( 1) equation can be derived either from the h -+ 00, k -+ 00 

limit, or with the limiting processes reversed, provided, of course, the O(s) equations 
are used as an intermediate step. Either route gives 

(11) 
9 F  - = $E-E/?F+O(C). 
9 t  

This formula plainly cannot be derived from the O( 1) equations ( 7 )  or (10). 
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FIGURE 2. Polar plot of D w8. a for h = 21, k = 0. --, O ( e )  theory (S) ,  (9 ) ;  ---, experiments of 
Torza et al. (1972). Period of one oscillation: theory, 7.9; experiment, 8.7. 

At first sight, consideration of the error terms in, say, (S)', (9)' would suggest that 
(1 1) is as accurate a result as may be written down in this double limit. In  fact, however, 
the terms of O(k/h2)  in (8)' are known from (3),  and hence (11)  may be improved by 
the O(s) theory: 

9 * F  -- - ~ F - Z / ~ F + E  [+oSd(E. F) -PE +%+/3F +$!$&%/3Sd(F2)] + O(s2), (12) Bt 

i$Sd4( E F) - $/3H - &n/3Sd4( FF) + O(t.). (13) 
5?*H 

9 t  
-= 

Equations (S)', (9)' may be recovered at once by setting /3 = 0, and hence (12)) (13) are 
uniformly valid in k as h -+ co. 

Cox (1969) considered the behaviour of the solution trajectories of ( I  l),  and showed 
the existence of an equilibrium within the range of validity of the analysis. I n  the 
previous section i t  was noted that, even when the O ( E )  terms for the flow are included, 
the strength of the flow is underestimated in regard to the distortion it produces. I n  
this limit, however, we find that the inclusion of O(s )  terms for the large surface 
tension tends also to underestimate the strength of the restoring force, with the net 
effect that  the magnitude of the distortion is significantly increased over that pre- 
dicted by (1  1 ), and can be larger than that found experimentally. 

Figure 3 shows a typical time evolution for a case considered experimentally by 
Torza et al. (1972). The maximum deformation (0-3) is only 3 yo below that found 
experimentally, compared with 20 % for the O( 1) theory. The period, however, is now 
overestimated. I n  figure 4 we show a less successful case with A = 4.3. Here the O(1) 
theory shows the correct qualitative behaviour, but considerably underestimates the 
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FIGURE 3. Polar plot of D vs. a for h = 8.8, k = 0.81, /3 = 0.09. -, O(s) theory (12), (13); 
_._.- , O(1) theory (11). Maximum value of D attained: O(E) theory, 0.24; O(1) theory, 0.30; 
experiment, 0-31. Time elapsed between first and second maximum: O(E) theory 19.6; O(1) 
theory, 8.6; experiment, 13.0. 
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FIGURE 4. Polar plot of D va. a for A = 4.3, k = 2.1, ,8 = 0.48. -, O(s) theory (12), (13); 
---, O(  1) theory (1 1) ; ---, experiments of Torza et al. (1972). 
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deformation. The O ( E )  theory follows the D(t)  curve from sphericity to  a larger defor- 
mation (0.35), but then diverges from it, becomes unbounded, and no equilibrium is 
found. Plainly A = 4.3 is not sufficiently large for the A >> 1 theory to  be appropriate. 

This work was performed while the author was visiting the Department of Chemical 
Engineering, California Institute of Technology, during 1978. 
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